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Objectives


• Pooling various sources of information of possibly 
different pedigree: models, experiments and expert 
opinions 

• Methodology for estimating percentiles of failure 
distributions and allowables 

• Minimizing amount of data needed for certification 
process 

• Accounting for various sources of uncertainty 

• Demonstration of the approach with case studies 

• Validation in controlled statistical environment 
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Accomplished Tasks


•	 Developed factor model for direct estimation of percentiles
using: 
- various sources of information (models, experiments, expert 

opinions); it is possible to quantify value of different inputs 

- statistical characteristics: mean, st.dev., deviation CVaR, etc. 

•	 simple, clear, computationally effective methodology enables 
pooling data across 
- many individual materials: relatively small requirements to size of 

the datasets 
- various experiment setups: crediting simple experiments to more 

sophisticated (expensive) ones 
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Accomplished Tasks (cont'd)


•	 Developed CVaR statistical techniques for optimal estimating 
weighting coefficients of factor model and confidence 
intervals (A-basis and B-basis) 

- percentile/CVaR regression approach was specially designed for 
estimating percentiles and confidence intervals (A and B-basis) 

- CVaR deviation measure has exceptional mathematical and 

computational qualities: coherent measure (convexity, etc.)

- NO  distribution assumptions (such as normality, ...) 

- approach is based on linear programming: very large datasets, 
stability of results, high speed of calculations 

•	 CVaR statistical technique for combining various modeling 
and experimental inputs is new; it was developed in the 
framework of AIM-C project 
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Accomplished Tasks (Cont'd)

•	 Two case studies for open-hole coupon dataset: estimation

of 10th percentile and B-basis  (failure data + 3 models ) 
- In-sample calculations with CVaR regression provided correct 
estimates of percentiles of failure load distributions. 

- Models via CVaR regression provide plausible percentile estimates 
and B-basis, even in the absence of any experimental test 
information. 

- Out-of-sample 10th percentile estimates based on Model 1 
individually, and on Model 1 plus 5 test points, are close to their true 
values. B-basis values are also close to nominal values based on 
actual experiments. 

- Benefits of combining models for predicting percentiles were 
quantified 

- Benefits of combining models and experimental data were 
evaluated 
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Accomplished Tasks (Cont'd)


•	 Case study with Monte-Carlo simulated data  

- minimal number of stacking sequences needed to populate the 
CVaR regression model and sensitivity to this number 

- minimal number of experimental datapoints per stacking sequence 
and sensitivity to this number 

- CVaR error (which is observer) versus "true" error in percentiles 
which can not be observed 

- sensitivity of the approach to errors in models 

•	 Our investigations provide compelling evidence that the 
methodology we are developing can integrate modeling and 
experimental data and radically reduce overall testing cost 
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Percentiles and Allowables 

Success 

B-basis (lower bound on 
10%percentile) 
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Failure 

10% percentile 

Failure load distribution 



Factor Models: Percentile and CVaR Regression


factors X1 , ..., Xq from various sources of information 
failure load Y 

=Y c0 + c  X  +, ..., +c  Xq + ε , where ε is an error term1 1 q 

c0 + c  X  1 +, ...,  +c  Xq = direct estimator of percentile with1 q 

confidenceα 

10% points below line: 

= 10% 

X 

Y 

α 

Percentile regression (Koenker and Basset (1978))

CVaR regression (Rockafellar, Uryasev, Zabarankin (2003))
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Percentile Error Function and CVaR Deviation 

Statistical methods based on 
functions: )( ) ]E α ε − +− − + 

ε + 

ε − 

= positive part of error 
= negative part of error 

CVaR 

Success 

Percentile 

Mean 
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[(1 αε  

Failure 

CVaR deviation 



Case Study 1: Dataset 


• Two rows of data (totally 35 rows, test type = 13, test type 2 = 14, 
test type 3 = 4, test type 4 = 4) 

W/D Test Data 
Prediction Model 1 

upper estimate 
Prediction 
midpoint 

Prediction Model 1 
lower estimate 

6 

137.34 

115.6 109 

118.96 

119.41 

110.64 

103.67 

mean 118 mean 112.3 

6 

48.3 

56.64 51.68 
48.36 

49.54 

49.88 

46.02 

mean 48.42 mean 54.16 
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How It Works? 

µ = (115.6+109)/2 

σ = (115.6-109)/2 

137.34 

115.6 109 
118.96 

119.41 

110.64 

103.67 

48.3 

56.64 51.68 
48.36 

49.54 

49.88 

46.02 

µ σ 137.34 

µ σ 118.96 

µ σ 119.41 

µ σ 110.64 

µ σ 103.67 

µ σ 48.3 

µ σ 48.36 

µ σ 49.54 

µ σ 49.88 

µ σ 46.02 

(c0+ c1 µ + c2σ) - 137.34 = error 1 

(c0+ c1 µ + c2σ) - 118.96 = error 2 
… 

(c0+ c1 µ + c2σ) - 48.3 = error 1 
(c0+ c1 µ + c2σ) - 48.36 = error 2 

… 

∆min CVaR 0.9 [−error ] => coefficients (c0,c1,c2) for 10% 
∆min CVaR 0.8 [−error ] => coefficients (c0,c1,c2) for 20% 

• Linear Programming, large dimensions 
Approved for Public Release, Distribution Unlimited 



CVaR Regression: Model 1 predictions


• Factors (midpoint and width) generated by Model 1 
1 1µ = (115.6 + 109)/2  , σ =  (115.6 - 109)/2  

2µ 2 = (56.64 + 51.68)/2 ,       σ =  (56.64 - 51.68)/2
 . . . 

• 90% estimator obtained by CVaR regression 

i i iy = -6.870 + 1.138 µ + 0.788 σ90% 

CVaR ∆ [ε ] = 13.3370.9 

• 10% estimator obtained by CVaR regression 

i i iy = -2.427 + 0.974 µ - 1.008 σ10% 

∆∆ ε ]CVaR 0.9 [− = 9 CVaR [ε ] = 8.905 0.1 
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CVaR Regression, In-Sample Experiments

Model 1 + 5 measurements


• Factors calculated with experimental data 

im = estimates of mean for material i based on experimental data 
is = estimate of standard deviation for material i based on experimental data 

• 10% estimator obtained by CVaR regression 

i i i iy = 0.430 - 0.015µ - 0.075σ +1.013m - 1.129 si 
10% 

∆∆ ε ]CVaR 0.9 [− = 9CVaR = 4.9010.1 

• CVaR error (4.901) based on 5 experiments and Model 1 is 
significantly lower compared to CVaR error (8.905) based only
on Model 1 
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Out-of-sample Calculations: Raw # 11


• Stacking sequence, raw 11, contains 294 measurements. It is
considered for out-of sample verification of the approach. 

• Model 1 lower and upper bounds equal 37.86 and 39.75, 
accordingly. 

• CVaR regression based on Model 1 prediction is used to estimate
10% and B-basis for raw 11. B-basis is lower than 10% actual 
percentile calculated with 294 measurements (see the following
graph). 

• 5,000 random samples of 5 measurements were generated. In
78% cases B-basis based on these measurements was lower 
than 10% actual percentile. 

• CVaR regression based on Model 1 prediction + 5 sample 
measurements {38.12, 37.214, 37.637, 37.707, 35.63} are used to 
estimate 10% and B-basis (see the graph). 
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CVaR Regression: Model 1 predictions
10% and B-basis 

1 ions 
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CVaR Regression: Model 1 +5 Measurements
10% and B-basis 

Model 
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1 and Five Datapoints Percentile Prediction 



Case Study 2: Dataset


• One row of data (totally 28 rows,  Test type 1 = 10, Test Type 2 = 10, Test 
Type 3 = 4, Test Type 4 = 4) 
• Keep only 19 stacking sequences having at least 5 measurements 
• Symmetric dataset was created with only 5 measurements per sequence 

Model 1 Model 2 Model 3 

Type Data 

(2 levels) (100 samples) (100 outcomes) 

UL LL Average Sigma Average Sigma 

1 
Test 

Type 1 38.65 43.83 37.95 42.90 1.00 37.40 1.03 

39.02 10% 41.46 10% 35.95 

39.78 90% 44.17 90% 38.76 

38.46 

40.7 
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Case Study 2: Objectives


• Evaluation of 
- predictive capabilities of models for estimating percentiles and 

allowables 
- benefits of combining of models 
- benefits of combining models and actual experimental data 

- savings in number of actual experiments (replaced by model 
predictions) 

• Suggestions for models calibration and removing of 
outliers 
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Predicting 10% : Model Ranking

• M# =  model # ;  T#  = # of measurements 

13.8220.0400.04090.6600.510 

10.2871.000T5 

regression coefficients 

27.1610.594M3 

24.6560.0050.571M2 

16.861.098M1 

CVaRst.devmeanst.devmeanst.devmeanst.devmeanSetup 

-1.243 - 6.005  M123 

-1.435 

- 0.314  

- 4.303  

•	 Model 1 (UL and  LL) : lowest CVaR = 16.86 among  three models 

•	 Model 2 (Monte Carlo): CVaR = 24.656 is higher than in Model1, 
information on st.dev. is not used 

•	 Model 3 (Monte Carlo): CVaR = 27.161 is higher than in Models 1, 2 

•	 Model 123 (combining 3 models): 
- models combining reduces error: CVaR = 13.822 
- information on model 3 is not used, combining of Model 1 and 2 will give the 

same result as combining  3 models 

•	 Models can be used to predict percentile without any actual measurements. 
CVaR (M123) = 13.822 is not far away from CVaR (T5) = 10.287 with 5 measurements 
per stacking sequence 
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Combining 3 Models and 1-5 Measurements


regression coefficients 

1.000T5 

9.7250.0390.1630.1550.966 

0.0320.3330.875 

0.0460.7130.624 

0.0911.1610.2150.437 

0.0720.8250.1050.303 

CVaRst.devmeanst.devmeanst.devmeanst.devmeanSetup 

10.287 -1.435 

- 0.002  -0.178 - 0.110  -1.428 M123,T5 

10.786 - 0.059  -0.371 -1.640 -0.101 -0.876 M123,T4 

11.821 - 0.088  -0.718 - 3.881  -0.136 -0.268 M123,T3 

12.365 - 0.179  -1.029 - 5.714  -0.264 M123,T2 

12.609 - 0.081  -1.058 - 5.131  M123,T1 

•	 Models bring significant information (if only 1-3 measurements are 
available) 

•	 Models give input similar to 2-3 measurements (if only 1-3 
measurements are available) 

•	 Model 3 can be excluded from consideration without significant 
losses of information 
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Individual Models versus 5 Measurements


0.0321.036M3,T5 

regression coefficients 

1.000T5 

10.011.012M2,T5 

0.0690.940M1,T5 

CVaRst.devmeanst.devmeanst.devmeanst.devmeanSetup 

10.136 - 0.043  -1.436 

10.287 -1.435 

- 0.223  - 0.009  -1.435 

10.205 - 0.257  -1.457 

• Models do not make significant improvements in CVaR deviation if 5 

measurements per stacking sequence is available
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Model Ranking: Removing Outliers


•	 Combining models and data allows individual model calibration for 
each stacking sequence (not done at present time) 

•	 Outlier = no measurements in interval {mean-sigma, mean+sigma} 
•	 Removing of outliers is one of possible ways to calibrate models 

(screening out unacceptable models for specific stacking sequence) 
•	 Model 1 (7 outliers), Model 2 (9 outliers), Model 3 (12 outliers) 

10.0101.012M2,T5 

10.2050.0690.940M1,T5 

10.1360.0321.036M3,T5 

regression coefficients 

10.2871.000T5 

9.9411.164M2O ,T5 

10.0440.0220.0210.983M1O T5 

CVaRst.dev.meanst.dev.meanst.dev.meanst.dev.meanSetup 

- 0.223  - 0.009  -1.435 

- 0.257  -1.457 

- 0.043  -1.436 

-1.435 

- 0.256  - 0.180  - 1.253  

- 1.546  
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Case Study 2: Summary


•	 Models can be used to predict percentile without any actual 
measurements 

•	 Combining of models improves predictive capabilities of the 
approach (Model 1 + Model 2 without Model 3 ) 

•	 Models bring significant information if only 1-3 measurements for a 
new stacking sequence are available 

•	 Additional model calibration is allowed when models are combined 
with data 
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Estimation of 10% of Failure Distribution:

Testing in Controlled Statistical Environment:


• Minimal data requirements for CVaR regression approach? 
– how many stacking sequences is needed to calibrate the model? 
– how many actual measurements per stacking sequence? 

• Sensitivity of the CVaR estimation procedure to data 
– true error versus CVaR error 
– dependence of error on amount of data 

• Sensitivity to the quality of the model 
– perfect model 
– constant biases in model parameters 
– random errors in model parameters 
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Lessons Learned from Monte Carlo Simulations


•	 CVaR regression methodology is quite robust: 
–	 low sensitivity to systematic biases in scale and shape parameters of the 

model (completely insensitive to systematic bias in mean and st.dev.) 

•	 Stable results for cases with more than 10 stacking sequences and 
more than 3 actual measurements per stacking sequence 

•	 Relatively low sensitivity to number of stacking sequences (NO 
significant benefits to have more than 15 sequences) 

•	 CVaR Deviation (which we can observe) is higher than the true error 
in percentile (which we can not observe), especially for cases with 
large number of actual measurements per stacking sequence 
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Simulating Experimental and Modeling Data


•	 Modeling experimental and test data by Weibull distributions: 
rich family of distributions with various shapes and mean values 

•	 Two-Parameter Weibull Distribution: probability that an observation
β

lies between a and b ( 0 < a < b < ∞ ) equals e-(a/α)β - e-(b/α ) , where 
α is scale parameter and β is shape parameter 

•	 Weibull distributions have been fit for 19 stacking sequences (having 
at least 5 actual measurements) with maximum likelihood approach 

•	 Realistic range of parameters of Weibull distribution 
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Weibull Plots for 19 Stacking Sequences 
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Range of Parameters: Weibull Distribution 
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Assumptions on Models 


•	 Perfect Model 
Model distribution coincides with true distribution 
(however, CVaR approach is nonparametric and it does not utilize 
information on distribution) 

•	 Constant Bias in Scale Parameter (similar to bias in mean value) 
α => α +20 

•	 Constant Bias in Shape Parameter (similar to bias in standard 
deviation) 

β => β +20


•	 Random Bias in Scale Parameter 
α => α + 20*N(0,1) 

•	 Random Bias in Shape Parameter 
β => β + 20*N(0,1) 
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Sampling Procedure


Step 1. Sample uniformly m stacking sequences (points in the box of 
Weibull distributions) 

Step 2. For each stacking sequence sample n “experimental” data points 
from “true” Weibull 

Step 3. For each stacking sequence sample 100 “model” outcomes from 
“model” Weibull 

Step 4. Use CVaR regression to predict percentile 

Repeat Steps 1- 4 100 times and calculate Mean Absolute Deviation 
(MAD) error and Mean CVaR Deviation over 100 runs 
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Perfect Model is Used for Predicting Percentiles 

• Low sensitivity to # of stacking sequences, NO significant benefits for m>15 
• True error, Mean Absolute Deviation (MAD), ranges from 0.2 to 2 
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MAD versus MCD


• CVaR deviation can be observed, while true error in percentile can 
not be observed in real experiments 

• MCD provides a conservative estimate of MAD 
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MAD


• Stable Results for Sample Size n>10, 
• Unstable Results for m<5 & n<10 
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MAD: Stable Results in Wide Range of Parameters,

Unstable Results for m<5 & n<10
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Combining Modeling and Experimental Data:

Deterministic Bias and Random Error in Scale and Shape


• The approach is quite stable to both deterministic and
random errors in scale and shape 
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Combining Modeling and Experimental Data:

Deterministic Bias and Random Error in Scale and Shape


•	 Stable relations between MAD and MCD for various errors in the 

model (except the case with only 3 stacking sequences)
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Robust Results (MAD): Deterministic and Stochastic

Errors in Scale and Shape Parameters
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Recommendations for Implementation


•	 Certify a model for some area of applications 

•	 Calculate factors for a specific setup of in-sample data and out-of-
sample measurements 

•	 Validate the choice of factors with various experiments and Monte 
Carlo simulations 

•	 Use factor model for estimation of percentiles and allowables 
in out-of-sample calculations 
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